FLDENV

Load x87 FPU Environment

Opcodes

Hex Mnemonic Encoding Long Mode Legacy Mode Description
D9 /4 FLDENV m14/28byte None Valid Valid Load FPU environment from m14byte or m28byte.

Description

Loads the complete x87 FPU operating environment from memory into the FPU registers. The source operand specifies the first byte of the operating-environment data in memory. This data is typically written to the specified memory location by a FSTENV or FNSTENV instruction.

The FPU operating environment consists of the FPU control word, status word, tag word, instruction pointer, data pointer, and last opcode. Figures 8-9 through 8-12 in the IntelĀ® 64 and IA-32 Architectures Software Developer's Manual, Volume 1, show the layout in memory of the loaded environment, depending on the operating mode of the processor (protected or real) and the current operand-size attribute (16-bit or 32-bit). In virtual-8086 mode, the real mode layouts are used.

The FLDENV instruction should be executed in the same operating mode as the corresponding FSTENV/FNSTENV instruction.

If one or more unmasked exception flags are set in the new FPU status word, a floating-point exception will be generated upon execution of the next floating-point instruction (except for the no-wait floating-point instructions, see the section titled "Software Exception Handling" in Chapter 8 of the IntelĀ®64 and IA-32 ArchitecturesSoftware Developer's Manual, Volume 1). To avoid generating exceptions when loading a new environment, clear all the exception flags in the FPU status word that is being loaded.

If a page or limit fault occurs during the execution of this instruction, the state of the x87 FPU registers as seen by the fault handler may be different than the state being loaded from memory. In such situations, the fault handler should ignore the status of the x87 FPU registers, handle the fault, and return. The FLDENV instruction will then complete the loading of the x87 FPU registers with no resulting context inconsistency.

This instruction's operation is the same in non-64-bit modes and 64-bit mode.

Pseudo Code

FPUControlWord = SRC[FPUControlWord];
FPUStatusWord = SRC[FPUStatusWord];
FPUTagWord = SRC[FPUTagWord];
FPUDataPointer = SRC[FPUDataPointer];
FPUInstructionPointer = SRC[FPUInstructionPointer];
FPULastInstructionOpcode = SRC[FPULastInstructionOpcode];

FPU Flags Affected

The C0, C1, C2, C3 flags are loaded.

Exceptions

Floating-Point Exceptions

None; however, if an unmasked exception is loaded in the status word, it is generated upon execution of the next "waiting" floating-point instruction.

64-Bit Mode Exceptions

Exception Description
#UD If the LOCK prefix is used.
#AC(0) If alignment checking is enabled and an unaligned memory reference is made while the current privilege level is 3.
#PF(fault-code) If a page fault occurs.
#MF If there is a pending x87 FPU exception.
#NM CR0.EM[bit 2] or CR0.TS[bit 3] = 1.
#GP(0) If the memory address is in a non-canonical form.
#SS(0) If a memory address referencing the SS segment is in a non- canonical form.

Compatibility Mode Exceptions

Same exceptions as in protected mode.

Virtual-8086 Mode Exceptions

Exception Description
#UD If the LOCK prefix is used.
#AC(0) If alignment checking is enabled and an unaligned memory reference is made.
#PF(fault-code) If a page fault occurs.
#NM CR0.EM[bit 2] or CR0.TS[bit 3] = 1.
#SS(0) If a memory operand effective address is outside the SS segment limit.
#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit.

Real-Address Mode Exceptions

Exception Description
#UD If the LOCK prefix is used.
#NM CR0.EM[bit 2] or CR0.TS[bit 3] = 1.
#SS If a memory operand effective address is outside the SS segment limit.
#GP If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit.

Protected Mode Exceptions

Exception Description
#UD If the LOCK prefix is used.
#AC(0) If alignment checking is enabled and an unaligned memory reference is made while the current privilege level is 3.
#PF(fault-code) If a page fault occurs.
#NM CR0.EM[bit 2] or CR0.TS[bit 3] = 1.
#SS(0) If a memory operand effective address is outside the SS segment limit.
#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit. If the DS, ES, FS, or GS register is used to access memory and it contains a NULL segment selector.